Mass

Spectrometry

1 Chap 14

ORGANIC LECTURE SERIES

Mass Spectrometry (MS)

- An analytical technique for measuring the mass-to-charge ratio (*m/z*) of ions in the gas phase
 - mass spectrometry is our most valuable analytical tool for determining accurate molecular masses
 - also can give information about structure
 - proteins can now be sequenced by MS

Mass Spectrometry (MS)

ORGANIC LECTURE SERIES

A Mass Spectrometer

- A mass spectrometer is designed to do three things
 - convert neutral atoms or molecules into a beam of positive (or negative) ions
 - separate the ions on the basis of their massto-charge (m/z) ratio
 - measure the relative abundance of each ion

A Mass Spectrometer

- Electron Ionization MS
 - in the ionization chamber, the sample is bombarded with a beam of high-energy electrons
 - collisions between these electrons and the sample result in loss of electrons from sample molecules and formation of positive ions

ORGANIC LECTURE SERIES

5

Molecular Ion

- Molecular ion (M): a radical cation formed by removal of a single electron from a parent molecule in a mass spectrometer
- For our purposes, it does not matter which electron is lost; radical cation character is delocalized throughout the molecule; therefore, we write the molecular formula of the parent molecule in brackets with

- a plus sign to show that it is a cation

a dot to show that it has an odd number of electrons

MS of dopamine

 a partial MS of dopamine showing all peaks with intensity equal to or greater than 0.5% of base peak

Other MS techniques

- What we have described is called electron ionization mass spectrometry (EI-MS)
- Other MS techniques include
 - fast atom bombardment (FAB)
 - matrix-assisted laser desorption ionization (MALDI)
 - chemical ionization (CI)
 - electrospray ionization (ESI)

ORGANIC LECTURE SERIES

Resolution

- Resolution: a measure of how well a mass spectrometer separates ions of different mass
 - low resolution: refers to instruments capable of separating only ions that differ in nominal mass; that is ions that differ by at least 1 or more atomic mass units
 - high resolution: refers to instruments capable of separating ions that differ in mass by as little as 0.0001 atomic mass unit

Resolution

- $-C_3H_6O$ and C_3H_8O have nominal masses of 58 and 60, and can be distinguished by lowresolution MS
- $-C_3H_8O$ and $C_2H_4O_2$ have nominal masses of 60
- distinguish between them by high-resolution MS

Molecular	Nominal	Precise	
Formula	Mass	Mass	
C_3H_8O	60	60.05754	
$C_2H_4O_2$	60	60.02112	

13

ORGANIC LECTURE SERIES

	lso	otope	es		
	Element	Atomic weight	Isotope	Mass (amu)	Relative A bun dance
-virtually all elements common to organic compounds are mixtures of isotopes	hydrogen	1.0079	$^{1}_{^{2}}\mathbf{H}$	1.00783 2.01410	100 0.016
	carbon	12.011	¹² C 13C	$\begin{array}{c} 12.0000 \\ 13.0034 \end{array}$	100 1.11
	nitrogen	14.007	¹⁴ N ¹⁵ N	$\begin{array}{c} 14.0031 \\ 15.0001 \end{array}$	100 0.38
	oxygen	15.999	¹⁶ O ¹⁸ O	15.9949 17.9992	100 0.20
	sulfur	32.066	³² S ³⁴ S	31.9721 33.9679	100 4.40
	chlorine	35.453	³⁵ Cl ³⁷ Cl	34.9689 36.9659	100 32.5
	bromine	79.904	⁷⁹ Br ⁸¹ Br	78.9183 80.9163	100 98.0

Isotopes

- carbon, for example, in nature is 98.90% ¹²C and 1.10% 1¹³C
- there are 1.11 atoms of carbon-13 in nature for every 100 atoms of carbon-12

1.10 x $\frac{100}{98.90}$ = 1.11 atoms ¹³C per 100 atoms ¹²C

 Summer element community to organic compounds that gives a significant M + 2 peak

- ³²S = 95.02% and ³⁴S = 4.21%

 Because M + 1 peaks are relatively low in intensity compared to the molecular ion and often difficult to measure with any precision, they are generally not useful for accurate determinations of molecular weight

Fragmentation of M

- To attain high efficiency of molecular ion formation and give reproducible mass spectra, it is common to use electrons with energies of approximately 70 eV [6750 kJ (1600 kcal)/mol]
 - this energy is sufficient not only to dislodge one or more electrons from a molecule, but also to cause extensive fragmentation
 - these fragments may be unstable as well and, in turn, break apart to even smaller fragments

19

Fragmentation of M

- A great deal of the chemistry of ion fragmentation can be understood in terms of the formation and relative stabilities of carbocations in solution
 - where fragmentation occurs to form new cations, the mode that gives the most stable cation is favored
 - the probability of fragmentation to form new carbocations increases in the order

Alkanes

- Fragmentation tends to occur in the middle of unbranched chains rather than at the ends
- The difference in energy among allylic, benzylic, 3°, 2°, 1°, and methyl cations is much greater than the difference among comparable radicals
 - where alternative modes of fragmentation are possible, the more stable carbocation tends to form in preference to the more stable radical

Alkanes

26

Alkynes

- Alkynes typically
 - show a strong molecular ion peak
 - cleave readily to form the resonance-stabilized propargyl cation or a substituted propargyl cation

3-Propynyl cation (**Propargyl cation**)

ORGANIC LECTURE SERIES

Alcohols

- One of the most common fragmentation patterns of alcohols is loss of H₂O to give a peak which corresponds to M-18
- Another common pattern is loss of an alkyl group from the carbon bearing the OH to give a resonance-stabilized oxonium ion and an alkyl radical

Molecularion A radical (a radical cation)

A resonance-stabilized oxonium ion

Alcohols

Aldehydes and Ketones

Amines

