Aldehydes And Ketones

Chap 16 1

- Adding e⁻ density to an atom will create a formal
 charge
- Proton transfer is fast (kinetics) and usually reversible

Reaction Themes

ORGANIC LECTURE SERIES

One of the most common reaction themes of a carbonyl group is **addition** of a nucleophile to form a tetrahedral carbonyl addition compound (intermediate).

Addition of H₂O to Carbonyls

Addition of water (hydration) to the carbonyl group of an aldehyde or ketone gives a geminal diol, commonly referred to a gemdiol

- gem-diols are also referred to as hydrates

groups bonded to the same carbon

Organic Lecture Series Acidity of α-Hydrogens	
Hydrogens alpha to a carbonyl group are more acidic than hydrogens of alkanes, alkenes, and alkynes but less acidic than the hydroxyl hydrogen of alcohols	Type of Bond pKa
	CH3 CH2 O-H 16
	o
	CH ₃ CCH ₂ -H 20
	CH ₃ C≡C-H 25
	CH ₂ =CH-H 44
	CH3 CH2-H 51

pKa = -log Ka

Oxidation of Aldehydes

Aldehydes are oxidized to carboxylic acids by a variety of oxidizing agents, including *H₂CrO₄

Metal Hydride Reduction

The most common laboratory reagents for the reduction of aldehydes and ketones are NaBH₄ and LiAlH₄

- both reagents are sources of hydride ion, H: a very powerful nucleophile

- refluxing an aldehyde or ketone with amalgamated zinc in concentrated HCI converts the carbonyl group to a methylene group
- Classic reaction but harsh conditions limit its use

Step 3: (not shown) proton transfer to solvent completes the reaction

α -Halogenation

ORGANIC LECTURE SERIES

Acid-catalyzed α-halogenation:

- introduction of a second halogen is slower than the first
- introduction of the electronegative halogen on the α carbon decreases the basicity of the carbonyl oxygen toward protonation

Base-promoted α-halogenation:

- each successive halogenation is more rapid than the previous one
- the introduction of the electronegative halogen on the α-carbon increases the acidity of the remaining αhydrogens and, thus, each successive α-hydrogen is removed more rapidly than the previous one