

Physical Properties Organic Lecture Series

 Carboxylic acids have significantly higher boiling points than other types of organic compounds of comparable molecular weight

 they are polar compounds and form very strong intermolecular hydrogen bonds

Physical Properties Organic Lecture Serie

 Carboxylic acids are more soluble in water than alcohols, ethers, aldehydes, and ketones of comparable molecular weight

 they form hydrogen bonds with water molecules through their C=O and OH groups

9

Physical Properties

		Molecular	Boiling	
Structure	Nomo	Weight (g/mol)	Point (°C)	Solubility $(\alpha/100 \alpha H \Omega)$
	Ivallie	(g/mor)	(C)	$(g/100 g \Pi_2 O)$
CH3 COOH	Acetic acid	60.1	118	Infinite
$CH_3 CH_2 CH_2 OH$	1-Propanol	60.1	97	Infinite
CH ₃ CH ₂ CHO	Propan al	58.1	48	16
$CH_3(CH_2)_2COOH$	Butanoic acid	88.1	163	Infinite
$CH_3(CH_2)_3CH_2OH$	1-Pentanol	88.1	137	2.3
$CH_3(CH_2)_3CHO$	Pentanal	86.1	103	Slight
$CH_3(CH_2)_4COOH$	Hexanoic acid	116.2	205	1.0
$CH_3(CH_2)_5CH_2OH$	1-Heptanol	116.2	176	0.2
$CH_3(CH_2)_5CHO$	Heptanal	114.1	153	0.1

11

Acidity

Carboxylic acids are weak acids

- values of pK_a for most aliphatic and aromatic carboxylic acids fall within the range 4 to 5
- The greater acidity of carboxylic acids relative to alcohols (both compounds that contain an OH group) is due to resonance stabilization of the carboxylate anion:

omula: Name:	CH ₃ COOH Acetic acid	Chloroacetic acid	Cl ₂ CHCOOH Dichloroacetic acid	Cl ₃ CCOOH Trich loro acetic acid
ormula:		I CICH ₂ COOH	Cl ₂ CHCOOH	CCOOH
th	rougn			
th	e carb	oxyl group	increase ac	idity
-el	ectron	-withdrawir	ng substituer	nts near
		Acid	lity	

 the form of a carboxylic acid present in aqueous solution depends on the pH of the solution

Reduction

The carboxyl group is very resistant to reduction

 it is not affected by catalytic hydrogenation under conditions that easily reduce aldehydes and ketones to alcohols, and reduce alkenes and alkynes to alkanes; it is not reduced by NaBH₄

Lithium aluminum hydride reduces a carboxyl group to a 1° alcohol

 reduction is carried out in diethyl ether, THF, or other nonreactive, aprotic solvent

Fischer Esterification

ORGANIC LECTURE SERIES

24

Fischer esterification is an **equilibrium reaction:**

- by careful control of experimental conditions, it is possible to prepare esters in high yield
- if the alcohol is inexpensive relative to the carboxylic acid, it can be used in excess to drive the equilibrium to the right

 alternatively, water can be removed by azeotropic distillation and a Dean-Stark trap

Acid Chlorides

Step 2: attack of chloride ion gives a tetrahedral carbonyl addition intermediate, which collapses to give the acid chloride

