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Enolate Anions
and Enamines

Chapter 19
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• The most important reaction of enolate 
anions is nucleophilic addition to the 
carbonyl group of another molecule of the 
same or different compound
– although these reactions may be catalyzed by 

either acid or base, base catalysis is more 
common

– The reaction results in a new C—C bond

The Aldol Reaction
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The product of an aldol reaction is
– a  β-hydroxyaldehyde or a  β-hydroxyketone

The Aldol Reaction

C

O

H(R')R

C

O

H(R')R

HC

OH

R
C

O

H(R')R

+

H3O+

OH- -hydroxycarbonyl

C

H

R
C

O

H(R')R

-unsaturated carbonyl

H3O+

OH-

Frequently, there is a second, dehydration step
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• The product of an aldol reaction is
– a  β-hydroxyaldehyde

– or a  β-hydroxyketone

CH3-C-H
O

CH2-C-H
H O NaOH βCH3-CH-CH2 -C-H

OH Oα
+

Acetaldehyde Acetaldehyde 3-Hydroxybutanal
(a β-hydroxyaldehyde; 

racemic)

O
CH3-C-CH3CH3-C-CH3

O
CH2-C-CH3

OH Ba(OH)2Ba(OH)2 ββ αα
OH

CH3

CH3-C-CH2-C-CH3
CH3

CH3-C-CH2-C-CH3

O

Acetone

+

4-Hydroxy-4-methyl-2-pentanone
(a β-hydroxyketone)

+

Acetone

The Aldol Reaction
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• Base-catalyzed aldol reaction
Step 1: formation of a resonance-stabilized enolate anion

Step 2: carbonyl addition gives a TCAI

Step 3: proton transfer to O- completes the aldol reaction

CH2=C-H
O -

CH2-C-H
O

H-O-HH-CH2-C-H
O

H-O - +
An enolate anion

+

pKa 20
(weaker acid)

pKa 15.7
(s tronger acid)

CH3-C-H
O

CH2-C-H
O

CH3-CH-CH2-C-H
OO -

A tetrahedal carbonyl
addition intermediate

+

The Aldol Reaction
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• Acid-catalyzed aldol reaction
– Step 1: acid-catalyzed equilibration of keto 

and enol forms

– Step 2: proton transfer from HA to the 
carbonyl group of a second molecule of 
aldehyde or ketone

O OH
CH3 - C-H CH2 = C- H

HA

CH3 -C-H
O

H A
O

CH3 -C-H

H

A+ +

The Aldol Reaction-Acidic
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– Step 3: attack of the enol of one molecule on 
the protonated carbonyl group of another 
molecule

– Step 4: proton transfer to A- completes the 
reaction

O
CH3 -C-H

H

CH2 =C-H

H
O

:A- CH3-CH-CH2-C-H
OH O

H-A+ ++

(racemic)

The Aldol Reaction-acidic

(Steps 3 & 4 are combined here)
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– aldol products are very easily dehydrated to 
α,β-unsaturated aldehydes or ketones

– aldol reactions are reversible and often little 
aldol present at equilibrium

– Keq for dehydration is generally large
– if reaction conditions bring about dehydration, 

good yields of product can be obtained

An α,β-unsaturated
aldehyde

β α
+

OOH O
CH3 CHCH2 CH CH3 CH= CHCH H2 O

warm in either
acid or base

The Aldol Products-H2O
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In a crossed aldol reaction, one kind of 
molecule provides the enolate anion and 
another kind provides the carbonyl group

CH3CCH3

O
HCH

O NaOH
CH3CCH2CH2OH

O

4-Hydroxy-2-butanone
+

Crossed Aldol Reaction
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Crossed aldol reactions are successful if:
1. one of the reactants has no α-hydrogen and, 

therefore, cannot form an enolate anion and
2. the other reactant has a more reactive 

carbonyl group, namely an aldehyde

HCH
O

CHO
O CHO CHO

Formaldehyde Benzaldehyde Furfural 2,2-Dimethylpropanal

Crossed Aldol Reaction

CH3CCH3

O
HCH

O NaOH
CH3CCH2CH2OH

O

4-Hydroxy-2-butanone
+
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Polyalkylation of Enolates:
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O

CH3

O-

CH3

O-

CH3

Kinetic Enolate
1)"Less" Stable
2) Form with LDA

H H

B:
:B

Thermodynamic Enolate
1)"More" Stable
2) Form with OH- or OR-

3) Equilibrating conditions

Kinetic vs Thermodynamic Enolates
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Crossed Enolate Reactions using LDA

• With a strong enough base, enolate anion 
formation can be driven to completion.

• The base most commonly used for this purpose 
is lithium diisopropylamide, LDA.

• LDA is prepared by dissolving diisopropylamine 
in THF and treating the solution with butyllithium.

[ ( CH3 ) 2 CH] 2 N-Li+

Lithium diisopropylamde
(weaker base)

[ ( CH3 ) 2 CH] 2 NH + CH3 ( CH2 ) 3Li + CH3 ( CH2 ) 2CH3
Butane
pKa 50

(weaker acid)

Butyllithium
(stronger base)

Diisopropylamine
(pKa 40

(stronger acid)
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• Using a molar equivalent of LDA 
converts an aldehyde, ketone, or ester 
completely to its corresponding 
enolate anion.

CH3COC2H5

O
+ [ ( CH3 ) 2 CH] 2 N  Li+ CH2=COC2H5 + [ ( CH3 ) 2 CH] 2 NH

O Li+

Ethyl acetate
pKa 23

(stronger acid)

Lithium enolate
(weaker base)

Lithium 
diisopropylamide

(stronger base)

Diisopropylamine
pKa40

(weaker acid)

Crossed Enolate Reactions using LDA
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• The crossed aldol reaction between 
acetone and an aldehyde can be carried 
out successfully by adding acetone to one 
equivalent of LDA to preform its enolate 
anion:

• which is then treated with the aldehyde.

O LDA

-78°C

O-Li+ C6H5CH2CH
O

1.

2. H 2O

OOH
C6H5

4-Hydroxy-5-phenyl-2-pentanone
(racemic)

Acetone Lithium
enolate

Crossed Enolate Reactions using LDA

Organic Lecture Series

16

• For ketones with two sets of nonequivalent 
α-hydrogens, is formation of the enolate 
anion regioselective?
– The answer is that a high degree of 

regioselectivity exists and that it depends on 
experimental conditions.

Crossed Enolate Reactions using LDA
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– When 2-methylcyclohexanone is treated 
with a slight excess of LDA, the enolate is 
almost entirely the less substituted enolate
anion.

O

+ LDA
0°C

O-Li+ O-Li+

[ ( CH3 ) 2 CH] 2 NH

(racemic)
 99% 1%

+
+

slight excess 
of base

Crossed Enolate Reactions using LDA
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• When 2-methylcyclohexanone is treated 
with LDA under conditions in which the 
ketone is in slight excess, the product is 
richer in the more substituted enolate.

O

+ LDA
0°C

O-Li+ O-Li+

[ ( CH3 ) 2 CH] 2 NH

(racemic)
 10% 90%

+
+

slight excess 
of the ketone

Crossed Enolate Reactions using LDA
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• The most important factor determining the 
composition of the enolate anion mixture is 
whether the reaction is under kinetic (rate) or 
thermodynamic (equilibrium) control.

• Thermodynamic Control: Experimental 
conditions that permit establishment of 
equilibrium between two or more products of a 
reaction. The composition of the mixture is 
determined by the relative stabilities of the 
products.

Crossed Enolate Reactions using LDA
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– Equilibrium among enolate anions is established 
when the ketone is in slight excess, a condition under 
which it is possible for proton-transfer reactions to 
occur between an enolate anion and an α-hydrogen 
of an unreacted ketone. Thus, equilibrium is 
established between alternative enolate anions.

Crossed Enolate Reactions using LDA
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• Kinetic control: Experimental conditions under 
which the composition of the product mixture is 
determined by the relative rates of formation of each 
product.
– In the case of enolate anion formation, kinetic control 

refers to the relative rate of removal of alternative          
α-hydrogens.

– With the use of a bulky base, the less hindered 
hydrogen is removed more rapidly, and the major 
product is the less substituted enolate anion.

– No  equilibrium among alternative structures is set up.

Crossed Enolate Reactions using LDA
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intramolecular aldol reactions are most 
successful for formation of five- and six-
membered rings
consider 2,7-octadione, which has two α-carbons

α3

α3

O

O

O

O

α1

α1

KOH

KOH

O

HO

O

OH

-H2O

-H2O

O

O
2,7-Octanedione

(not formed)

(formed)

Intramolecular Aldol Reactions
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• Esters also form enolate anions which 
participate in nucleophilic acyl substitution

the product of a Claisen condensation is a  
β-ketoester:

CC C C OR
O O

A β-ketoest er

β α

Claisen Condensation
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– Claisen condensation of ethyl propanoate 
gives this   β-ketoester

OEt

O

OEt

O
1. Et O- Na+

2. H2O, HCl
OEt

OO

EtOH+

Ethyl 
propanoate

Ethyl 2-methyl-3-
oxopentanoate

(racemic)

+

Ethyl 
propanoate

Claisen Condensation

Nota bene: the base should be the alkoxide of the ester group
(This will overcome trans-esterification.)
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Step 1: formation of an enolate anion

Step 2: attack of the enolate anion on a 
carbonyl carbon gives a TCAI

Et O - CH2-COEtH
O

EtOH CH2-COEt
O O -

CH2=COEt
pKa = 22

(weaker acid)
pKa 15.9
(stronger

acid)

Resonance-s tabilized enolate anion

-
++

CH3-C-OEt
O O

CH2-COEt
O - O

OEt
CH3-C-CH2 -C-OEt+

A tetrahedral carbonyl
addition intermediate

Claisen Condensation
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Step 3: collapse of the TCAI gives a β-ketoester 
and an alkoxide ion:

Step 4: an acid-base reaction drives the 
reaction to completion:

Et OCH3-C-CH2 -C-OEt
O OO

CH3-C-CH2-C-OEt
O

OEt
+

Et O
H

CH3-C-CH-C-OEt
O O

CH3-C-CH-C-OEt
OO

Et OH

pKa 15.9
(weaker acid)

pKa 10.7
(stronger acid)

++

Claisen Condensation
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Crossed Claisen condensations between two 
different esters, each with α-hydrogens, give 
mixtures of products and are not useful
– crossed Claisen condensations are useful, if there is 

an appreciable difference in reactivity between the 
two esters; when one of them has no α-hydrogens

O
HCOEt EtOCOEt

O
COEt
OO

EtOC-COEt

Diethyl ethanedioate
   (Diethyl oxalate)

Diethyl
carbonate

Ethyl
formate

Ethyl benzoate

O

Crossed Claisen Condensations
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– the ester with no α-hydrogens is 
generally used in excess

Ph OCH3

O

OCH3

O 1. CH3 O- Na+

2. H2O, HCl Ph OCH3

O O

Methyl
propanoate

Methyl
benzoate

+

Methyl 2-methyl-3-oxo-
3-phenylpropanoate

(racemic)

Crossed Claisen Condensations

Only this enolate can be formed
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• An intramolecular Claisen condensation

+

Diethyl hexanedioate
(Diethyl adipate)

Ethyl 2-oxocyclo-
pentanecarboxylate

1 .  Et O-  Na+

2 .  H2 O,  HCl

Et OH

OEt

O
Et O

O

OEt

O O

Dieckman Condensation
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• Carbonyl condensations are among the most 
widely used reactions in the biological world for 
the formation of new carbon-carbon bonds in 
such biomolecules as:
– fatty acids.
– cholesterol, bile acids, and steroid hormones.
– terpenes.

• One source of carbon atoms for the synthesis of 
these biomolecules is acetyl coenzyme A 
(acetyl-CoA). Coenzyme A is a carrier of the 
two-carbon acetyl group, CH3-CO-

Carbonyl Condensations in Biochemistry
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Cholesterol

H3 C

HO

H3 C

H H

H

More details in Chap. 26
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Biosynthesis of Steroids

The building block from which all carbon atoms 
of steroids are derived is the two carbon acetyl 
group of acetyl-CoA-

Stage 1: synthesis of isopentenyl pyrophosphate 
from three molecules of acetyl-CoA

Stage 2: synthesis of cholesterol
Stage 3: conversion of cholesterol to other steroids

glucocorticoid hormones (e.g., cortisone)
mineralocorticoid hormones (e.g., aldosterone)
sex hormones (e.g., testosterone and estrone)
bile acids (e.g., cholic acid)

cholesterol
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– Claisen condensation of acetyl-CoA is 
catalyzed by the enzyme thiolase. 

Acetoacetyl-CoA

Acetyl-CoAAcetyl-CoA

Coenzyme A

SCoA

O

SCoA

O

SCoA

OO

CoASH+

Claisen 
condensation

thiolase+

Acetyl-CoA in Biochemistry
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– This is followed by an aldol reaction with a second 
molecule of acetyl-CoA. Note that this reaction is 
stereoselective and gives only the S enantiomer.

SCoA

OO

SCoA

O

CoASH

SCoA

OOH
-O

O

   (S)-3-Hydroxy-3-
methylglutaryl-CoA

+

   3-hydroxy-3-methyl-
glutaryl-CoA synthetase

condensation
at this  carbonyl

Acetyl-CoA in Biochemistry
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– Enzyme-catalyzed reduction by NADPH of the 
thioester group.

SCoA

OOH
-O

O

2NADPH 2NADP+
OH

OH

-O

O

(R)-Mevalonate

   3-hydroxy-3-methyl-
glutaryl-CoA reductase

1

2 3

4

   (S)-3-Hydroxy-3-
methylglutaryl-CoA

1 4

3 2

OP2 O6
3 -

OPO3
2 -

-O OP2 O6
3 - CO2 PO4

3 -

Isopentenyl
pyrophosphate

β-elimin-
ation

(R)-3-Phospho-5-pyrophospho-
             mevalonate

a pyrophosphoric
ester

a phosphoric 
ester

++
O

Acetyl-CoA in Biochemistry

Phosphorylation by ATP followed by β-elimination.
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CH3 -C- S-CoA
O

Acetyl Coenzyme A

Isopentenyl pyrophosphate

(R)-Mevalonate

( C1 0 )

( C1 5 )

Geranyl pyrophosphate

Farnesyl pyrophosphate

( C3 0 ) Squalene

C10terpenes

C15and C20 terpenes

C30terpenes

OH

HO CH3O
-O

OP2 O6
3 -

Cholesterol

Biosynthesis of Cholesterol
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– Enzyme-catalyzed reduction by NADPH of the 
thioester group.

SCoA

OOH
-O

O

2NADPH 2NADP+
OH

OH

-O

O

(R)-Mevalonate

   3-hydroxy-3-methyl-
glutaryl-CoA reductase

1

2 3

4

   (S)-3-Hydroxy-3-
methylglutaryl-CoA

1 4

3 2

Acetyl-CoA in Biochemistry

The “Statin” drugs inhibit
HMGCoA Reductase and 
exert their action in this step
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Lovastatin
Mevacor

Atorvastatin 
Lipitor

Pravastatin 
Pravacol

Simvastatin 
Zocor
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Enamines are formed by the reaction of a 2°
amine with the carbonyl group of an
aldehyde or ketone
the 2° amines most commonly used to prepare 

enamines are pyrrolidine and morpholine:

Pyrrolidine M orpholine

N

O

N
H

H

Enamines
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+
H+

N
H

O

An enamine

-H2 O
N OH N

+
O

An enamine

N

O

OH N

O

N

O

H

H+

H+

-H2 O
H+

Preparation of Enamines

Acid catalyst is usually TsOH; azeotropic removal of H2O.

See Chapter 16 for details
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The value of enamines is that the β-carbon 
is nucleophilic (same C that was α to 
carbonyl)
– enamines undergo SN2 reactions with methyl 

and 1° haloalkanes, α-haloketones, and α-
haloesters

Enamines-Alkylation
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An iminium
bromide
(racemic)

The morpholine
enamine of

cyclohexanone

+
Br••N

O

Br
SN2 N

O

3-Bromopropene
(Allyl bromide)

Enamines-Alkylation

Morpholinium
chloride     

2-Allylcyclo-
hexanone

+HCl/ H2O
+

Br-N

O
O

+
Cl-N

O

H H

hydrolysis of the iminium halide (salt) gives the alkylated aldehyde or ketone:

treatment of the enamine with 1 eq of an alkylating agent gives an iminium halide:
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enamines undergo acylation when treated 
with acid chlorides and acid anhydrides

N

CH3 CCl
O

Cl- N O
HCl

O O

N
H H

Cl-

+

 Acetyl ch loride

An iminium
chloride
(racemic)

2-Acetylcyclo-
hexanone
(racemic)

+
+

+

H2 O

Enamines-Acylation
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Synthetic Advantages of 
Enamines vs Enolates

1) Avoids proton transfer.

2) Regiochemistry of alkylation can be 

controlled. (For un-symmetric ketones)

3) Avoids polyalkylation.

4) Avoids O-alkylation.
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Claisen condensations as routes to ketones

OEt

O

OEt

OO

1. Et O- Na+

2. H2O, HCl

3. NaOH, H2 O, heat

OEt

OO

4. H2O, HCl

5. heat
O

OH

O O
CO2

OH

OO

Et OH

Et OH

+

+

Reactions  1 & 2: Claisen  condensation  followed by acidification

Reactions  3 & 4: Saponification  and acidification

Reaction 5: thermal decarboxylation

+

This segment was added
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The result of Claisen condensation, saponification, 
acidification, and decarboxylation is a ketone:

R-CH2 -C
OR'

O

R

O
CH2-C-OR' R-CH2-C-CH2 -R

O
2HOR' CO2++

several
steps

+

from the ester
furnish ing the
enolate anion

from the ester
furnishing the 
carbonyl group

Claisen condensations as routes to ketones
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The acetoacetic ester (AAE) synthesis is 
useful for the preparation of mono- and 
disubstituted acetones of the following 
types

CH3CCH2 COEt
O O

R'

CH3CCHR
O

CH3CCH2 R
O

A disubstituted
acetone

A monosubstituted 
acetone

Ethyl acetoacetate
(Acetoacetic ester)

Acetoacetic Ester Synthesis
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– consider the AAE synthesis of this target 
molecule, which is a monosubstituted acetone

these three carbons 
are from ethyl 
acetoacetate

the -R group of a 
monosubstituted
acetone

5-Hexen-2-one

O

Acetoacetic Ester Synthesis
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– Step 1: formation of the enolate anion of AAE

– Step 2: alkylation with allyl bromide

COOEt

O

EtO-Na+

O

COOEt

Na+
EtOH

Sodium salt 
of ethyl 

acetoacetate

Sodium
ethoxide

Ethanol
pKa 15.9

(weaker acid)

++

Ethyl acetoacetate
pKa 10.7

(s tronger acid)

O

COOEt

Na+

Br
COOEt

O

NaBr+

3-Bromopropene
(Allyl bromide)

SN2
+

(racemic)

Acetoacetic Ester Synthesis
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– Steps 3 & 4 saponification followed by 
acidification

– Step 5: thermal decarboxylation

O

COOEt

3. NaOH, H2O
4. HCl, H2O COOH

O
Et OH+

(racemic)

COOH

O O
CO2+

5-Hexen-2-one
(a monosubstituted acetone)

heat

Acetoacetic Ester Synthesis
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– to prepare a disubstituted acetone, treat the 
monoalkylated AAE with a second mole of base, etc

COOEt

O
Et O- Na++

Na+O

COOEt

Et OH+

(racemic)
Na+

COOEt

O
CH3 I

COOEt

O

Na+  I -++
SN2

(racemic)
O

COOEt
3. NaOH, H2 O
4. HCl, H2O

O
EtOH+ CO2+

3-Methyl-5-hexen-2-one
(racemic)

(racemic) 5. heat

Acetoacetic Ester Synthesis
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The acetoacetic ester (AAE) synthesis is 
useful for the preparation of mono- and 
disubstituted acetones of the following types

CH3CCH2 COEt
O O

R'

CH3CCHR
O

CH3CCH2 R
O

A disubstituted
acetone

A monosubstituted 
acetone

Ethyl acetoacetate
(Acetoacetic ester)

Acetoacetic Ester Synthesis

CCH3

H2C
CO2Et

O
These types of reactions involve
active (i.e. acidic) methylene units 
as the nucleophilic component.
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HO

N CH3

HO

O

R

N CH3

"O"

1

2
3

4
5

6

N

R

"O"

CH3

Application: Synthesis of 4,4-Disubstituted Piperidines

Not exam material
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Application: Synthesis of 4,4-Disubstituted Piperidines

CH2

CN

N

Cl

Cl

CH3
NaH

NCH3

Ph

NC

NCH3

Ph

HOOC

NCH3

Ph

EtO2C

1) NaOH
2) HCl

EtOH

cat H+

Meperidine
Demerol ®

Not exam material
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– treat malonic ester with an alkali metal alkoxide

– alkylate with 1-bromo-3-methoxy propane

COOEt

COOEt
EtO-  Na++

Na+

COOEt

COOEt
EtOH

Ethanol
pKa 15.9

(weaker acid)

Sodium 
ethoxide

Sodium salt of 
diethyl malonate

+

Diethyl malonate
pKa 13.3

(s tronger acid)

MeO Br
Na+

COOEt

COOEt

COOEt

COOEt
MeO Na+  Br-++

SN2

Malonic Ester Synthesis
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– saponify and acidify

– decarboxylation

2EtOH+
COOEt

COOEtMeO
3. NaOH, H2 O
4. HCl, H2O

COOH

COOHMeO

COOH

COOHMeO
heat

MeO COOH CO2+

5-Methoxypentanoic acid

Malonic Ester Synthesis
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O

C H 3

1

2

3
4 O

C H 3

1

2

3
4 O

C H 3

1

2

3
4

Addition to α,β-unsaturated Carbonyls

When the carbonyl group is conjugated with an 
alkene, the two groups can act in tandem to 
expand synthetic utility.
α,β-unsaturated carbonyl compounds can exhibit 
properties of both the carbonyl and alkene group:
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O

C H 3

1

2

3
4 δ+

δ+

1 ,2  A d d itio n

1 ,4  A d d itio n
C o n ju g a te  A d d itio n

M ic h a e l A d d itio n

O

C H 3

O

C H 3

:N u

:N u

N u

N u

O H

C H 3

N u

O H

C H 3N u

O

C H 3

N u
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• Michael reaction: the nucleophilic addition 
of an enolate anion to an α,β-unsaturated 
carbonyl compound (1,4 addition)
– Example:

COOEt

EtOOC
O

Et O-  Na+

EtOH COOEt

EtOOC
O

+

3-Buten-2-one
(Methyl vinyl

ketone)

Diethyl
propanedioate

(Diethyl malonate)

Michael Reaction
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CH2 =CHCCH3

O

CH2 =CHCOEt
O

CH2 =CHCNH2

O

CH3 CCH2 CCH3

O O

CH2 =CHNO2

CH2 =CHC N

CH2 =CHCH
O

CH3 CCH2 COEt
O O

O
EtOCCH2 COEt

O

N
CH3 C=CH2

CH3 CCH2 CN
O

NH3 , RNH2 , R2 NH

These Types of α,β-Unsaturated 
Compounds  are Nucleophile 
Acceptors in  Michael Reactions

These Types of Compounds
Provide Effective Nucleophiles
for Michael Reactions

β-Ketoester

β-Diketone

β-Diester

Enamine

β-Ketonitrile

Aldehyde

Ketone

Ester

Amide

Nitrile
Nitro compound

Amine

Michael Acceptors & Nucleophiles
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Example:

– the double bond of an α,β-unsaturated 
carbonyl compound is activated for 
nucleophilic attack:

COOEt

O O

EtO- Na+

EtOH

O

COOEt

O

2-CyclohexenoneEthyl 3-oxobutanoate
(Ethyl acetoacetate)

+

O O

+

O
+

Michael Reaction
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• Mechanism
Step 1: proton transfer to the base

Step 2: addition of Nu:- to the β carbon of the 
α,β-unsaturated carbonyl compound

Base
+ +Nu-H :B- Nu:- H- B

+ C C C
O

CCNu C
O

CCNu C
O

Resonance-stabilized enolate anion

Nu

Michael Reaction
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Step 3: proton transfer to HB gives an enol

Step 4: tautomerism of the less stable enol form 
to the more stable keto form

CCNu C
O

H-B+ CCNu C
O-H

BB

                An enol
(a product of 1,4-addition)

1

4 3 2
+

CCNu
O-H

C CCNu C
H O

More stable keto formLess  stable enol form

Michael Reaction
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A final note about nucleophilic addition to 
α,β-unsaturated carbonyl compounds:

resonance-stabilized enolate anions 
and enamines are weak nucleophiles, 
react slowly with α,β-unsaturated 
carbonyl compounds
give 1,4-addition products

Michael Reaction
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Retrosynthesis of 2,6-Heptadione

O O O O

COOH

O

COOEt

O

this carbon
los t by 
decarboxylation

this bond formed
in a Michael reaction

      Ethyl 
acetoacetate

Methyl vinyl
    ketone

these three 
carbons  from
acetoacetic ester

+

MVK is the reagent to add a 2-oxobutyl side chain

H3C
C
H2

C

O

CH3
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Michael-Aldol in Combination:
The Robinson Ring Annulation

+

Ethyl 2-oxocyclohex-
anecarboxylate

3-Buten-2-one
(Methyl vinyl

ketone)

1 . NaOEt , Et OH

(Michael reaction)

2 . NaOEt , Et OH

(Aldol reaction)

COOEt

O O

COOEt

OO O

COOEt

H


