Reactions of Benzene & Its Derivatives

Chapter 22

1

Reactions of Benzene

ORGANIC LECTURE SERIES

The most characteristic reaction of aromatic compounds is substitution at a ring carbon:

Halogenation:

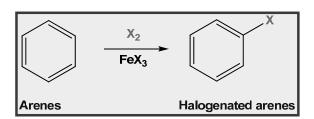
$$H + Cl_2 \xrightarrow{FeCl_3} Cl + HCl$$

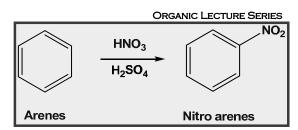
Chlorobenzene

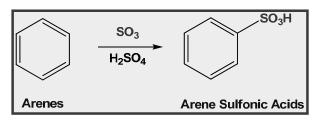
Nitration:

 $H_2 SO_4 NO_2 + H_2 O$

Nitrobenzene


Reactions of Benzene


Sulfonation: $H_2 SO_4 \longrightarrow SO_3 H$ Benzenesulfonic acid


Alkylation:

Acylation:

3

Carbon-Carbon Bond Formations:

Electrophilic Aromatic Substitution

 Electrophilic aromatic substitution: a reaction in which a hydrogen atom of an aromatic ring is replaced by an electrophile

- In this section:
 - several common types of electrophiles
 - how each is generated
 - the mechanism by which each replaces hydrogen

5

EAS: General Mechanism

A general mechanism

 Key question: What is the electrophile and how is it generated?

Electrophilic Aromatic Substitution (EAS)

Chlorination

ORGANIC LECTURE SERIES

Step 1: formation of a chloronium ion

Step 2: attack of the chloronium ion on the ring

Chlorination

Step 3: proton transfer regenerates the aromatic character of the ring

9

Bromination

ORGANIC LECTURE SERIES

— H + Br₂ — FeBr₃ — Br + HBr Bromobenzene

This is the general method for Substitution of halogen onto a benzene ring (CANNOT be halogenated by Free Radical Mechanism)

Nitration

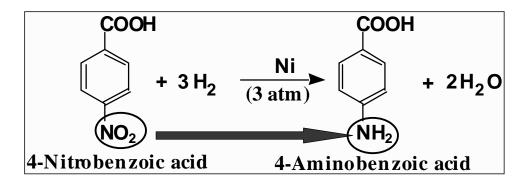
- Generation of the nitronium ion, NO₂+
 - Step 1: proton transfer to nitric acid

 Step 2: loss of H₂O gives the nitronium ion, a very strong electrophile

11

Nitration

ORGANIC LECTURE SERIES


Step 1: attack of the nitronium ion (an electrophile) on the aromatic ring (a nucleophile)

$$+ \overset{+}{\circ} = \overset{+}{\circ} = \overset{-}{\circ} - \overset{+}{\circ} + \overset{-}{\circ} = \overset{+}{\circ} + \overset{-}{\circ} + \overset{-}{\circ} = \overset{+}{\circ} + \overset{-}{\circ} = \overset{+}{\circ} + \overset{-}{\circ} = \overset{+}{\circ} = \overset{-}{\circ} + \overset{-}{\circ} = \overset{+}{\circ} + \overset{-}{\circ} = \overset{-}{\circ} + \overset{-}{\circ} = \overset{-}{\circ} + \overset{-}{\circ} = \overset{-}{\circ} = \overset{-}{\circ} + \overset{-}{\circ} = \overset{-}{\circ} = \overset{-}{\circ} + \overset{-}{\circ} = \overset{$$

Step 2: proton transfer regenerates the aromatic ring

Nitration

 A particular value of nitration is that the nitro group can be reduced to a 1° amino group

13

Sulfonation

ORGANIC LECTURE SERIES

 Carried out using concentrated sulfuric acid containing dissolved sulfur trioxide

(SO₃ in H₂SO₄ is sometimes called "fuming" sulfuric acid.)

Friedel-Crafts Alkylation

 Friedel-Crafts alkylation forms a new C-C bond between an aromatic ring and an alkyl group

The electrophilic partner is a carbocation; it will arrange to the most stable ion: allylic>3°>2°>1°

15

Friedel-Crafts Alkylation

ORGANIC LECTURE SERIES

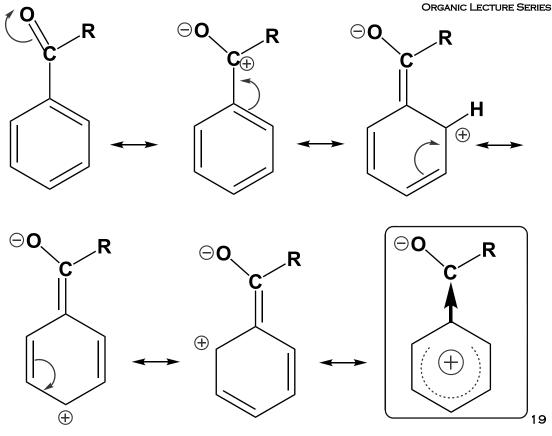
Step 1: formation of an alkyl cation as an ion pair

Step 2: attack of the alkyl cation on the aromatic ring

Step 3: proton transfer regenerates the aromatic ring

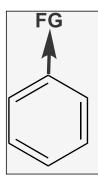
Friedel-Crafts Alkylation

There are two major limitations on Friedel-Crafts alkylations:


1. carbocation rearrangements are common:

17

ORGANIC LECTURE SERIES


Friedel-Crafts Alkylation

 F-C alkylation fails on benzene rings bearing one or more of these strongly electronwithdrawing groups

ORGANIC LECTURE SERIES

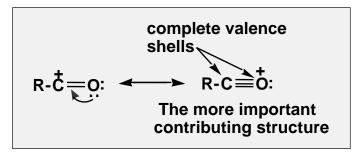
The "De-activation" of **Aromatic Systems**

If the FG is an e⁻ withdrawingsubstitutent, then the ring system becomes more electron poor and is said to be "deactivated" towards electrophilic aromatic substitution. EAS occurs at a slower rate.

Note: deactivation refers to the rate of EAS

Friedel-Crafts Acylation

 Friedel-Crafts acylation forms a new C-C bond between a benzene ring and an acyl group:

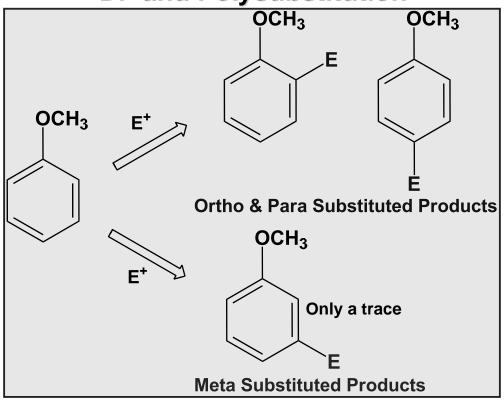

21

Friedel-Crafts Acylation ORGANIC LECTURE SERIES

The electrophile is an acylium ion

Friedel-Crafts Acylation

 an acylium ion is a resonance hybrid of two major contributing structures


 F-C acylations are free of a major limitation of F-C alkylations; acylium ions do not rearrange.

23

Friedel-Crafts Acylation

ORGANIC LECTURE SERIES

A special value of F-C acylations is preparation of **unrearranged** alkylbenzenes:

ORGANIC LECTURE SERIES

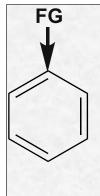
25

Di- and Polysubstitution

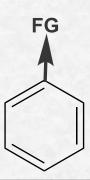
Orientation on nitration of monosubstituted benzenes:

Substituent	ortho	meta	para	ortho + para	meta
—och₃	44	-	55	99	trace
$-CH^3$	58	4	38	96	4
-a	70	-	30	100	trace
—Br	37	1	62	99	1
—соон	18	80	2	20	80
-cn	19	80	1	20	80
$-NO_2$	6.4	93.2	0.3	6.7	93.2

Orientation:


- –certain substituents directpreferentially to ortho & parapositions; others to meta positions
- substituents are classified as either ortho-para directing or meta
 directing toward further substitution

27


Di- and Polysubstitution Organic Lecture Series

Rate

- -certain substituents cause the rate of a second substitution to be greater than that for benzene itself; others cause the rate to be lower
- substituents are classified as activating or deactivating toward further substitution

If the FG is an e⁻ donating substitutent, then the ring system becomes more electron rich and is said to be "activated" towards electrophilic aromatic substitution. EAS is at a faster rate.

If the FG is an e⁻ withdrawingsubstitutent, then the ring system becomes more electron poor and is said to be "deactivated" towards electrophilic aromatic substitution. EAS occurs at a slower rate.

29

Di- and Polysubstitution

ORGANIC LECTURE SERIES

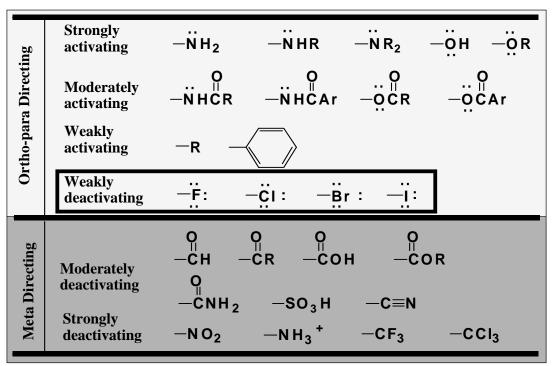
– -OCH₃ is ortho-para directing:

OCH₃

$$+ HNO_3$$

$$CH_3COOH$$

$$OCH_3 \\
NO_2 \\
NO_2$$
Anisole
$$o\text{-Nitroanisole} \\
(44\%)$$


$$(55\%)$$

- CO₂H is meta directing

COOH

$$+ \text{HNO}_3$$
 $+ \text{HNO}_3$
 $+ \text{HNO}_3$
 $+ \text{HNO}_2$
 $+ \text{HNO}$

30

31

Di- and Polysubstitution Organic Lecture Series

the order of steps is important:

CH₃

$$HNO_3$$
 H_2SO_4
 NO_2
 H_2SO_4
 NO_2
 P -Nitrobenzoic acid

 $K_2Cr_2O_7$
 H_2SO_4
 NO_2
 P -Nitrobenzoic acid

 $K_2Cr_2O_7$
 H_2SO_4
 NO_2
 P -Nitrobenzoic acid

Theory of Directing Effects

- The rate of EAS is limited by the slowest step in the reaction
- For almost every EAS, the ratedetermining step is attack of E+ on the aromatic ring to give a resonancestabilized cation intermediate
- The more stable this cation intermediate, the faster the ratedetermining step and the faster the overall reaction

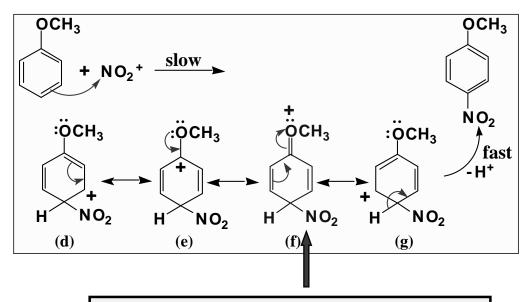
33

Theory of Directing Effects

- For ortho-para directors, ortho-para attack forms a more stable cation than meta attack
 - ortho-para products are formed faster than meta products
- For meta directors, meta attack forms a more stable cation than ortho-para attack
 - meta products are formed faster than ortho-para products

Theory of Directing Effects ORGANIC LECTURE SERIES

Nitration of anisole


-OCH₃; examine the meta attack:

35

ORGANIC LECTURE SERIES

Nitration of anisole

-OCH₃: examine the ortho-para attack:

This resonance structure accounts for the selectivity

Theory of Directing Effects

Nitration of benzoic acid

-NO₂; examine the meta attack:

37

Nitration of benzoic acid

ORGANIC LECTURE SERIES

-NO₂: assume ortho-para attack:

This resonance structure accounts for the selectivity

Activating-Deactivating

- Any resonance effect, such as that of -NH₂, -OH, and -OR, that delocalizes the positive charge on the cation intermediate lowers the activation energy for its formation, and has an activating effect toward further EAS
- Any resonance effect, such as that of -NO₂, -CN, -CO, and -SO₃H, that decreases electron density on the ring deactivates the ring toward further EAS

39

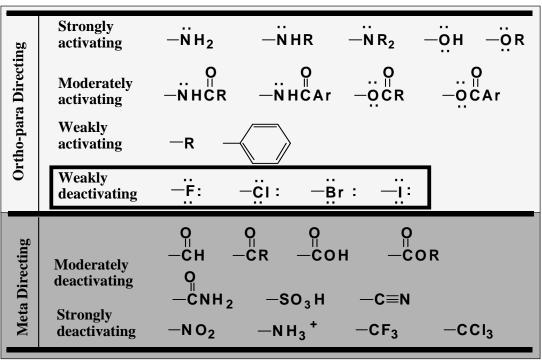
Activating-Deactivating

ORGANIC LECTURE SERIES

- Any inductive effect, such as that of -CH₃ or other alkyl group, that releases electron density toward the ring activates the ring toward further EAS
- Any inductive effect, such as that of halogen, -NR₃+, -CCl₃, or -CF₃, that decreases electron density on the ring deactivates the ring toward further EAS

Generalizations:

- alkyl, phenyl, and all other substituents in which the atom bonded to the ring has an unshared pair of electrons are orthopara directing; all other substituents are meta directing
- all ortho-para directing groups except the halogens are activating toward further substitution;
- -the halogens are weakly deactivating


41

ORGANIC LECTURE SERIES

Activating-Deactivating

- ➤ for the **halogens**, the inductive and resonance effects run counter to each other, but the former is somewhat stronger
- the net effect is that halogens are deactivating but ortho-para directing

