Useful Spectroscopic Data

Important Infrared Absorptions

Type of Absorption	Frequency, cm ⁻¹ , (Inte	ensity) Comment Alkanes
C–H stretch	2850-3000 (m)	occurs in all compounds with aliphatic C–H bonds
		Alkenes
C=C stretch -CH=CH ₂	1640 (m)	
C=CH ₂	1655 (m)	
others =C-H stretch =C-H bend	1660–1675 (w) 3000–3100 (m)	not observed if alkene is symmetrical
-CH=CH ₂	910–990 (s)	
C=CH ₂	890 (s)	
H C=C H	960–980 (s)	
	675–730 (s)	position is highly variable
H C=C	800–840 (s)	
,	Alc	ohols and Phenols
O–H stretch	3200–3400 (s)	
C–O stretch	1050–1250 (s)	also present in other compounds with C–O bonds: ethers, esters, etc.
		Alkynes
C=C stretch	2100–2200 (m)	not present or weak in many internal alkynes
≡C-H stretch	3300 (s)	present only in terminal alkynes
C–C stretch	ATU 1500-1600 (s)	two absorptions
C-H bend	650–750 (s)	
overtone	1660-2000 (w)	
	()	Aldehydes
C=O stretch		·
ordinary	1720–1725 (s)	
α,β -unsaturated	1680–1690 (s)	
benzaldehydes	1700 (s)	
C–H stretch	2720 (m)	
		Ketones
C=O stretch		
ordinary	1710–1715 (s)	increases with decreasing ring size
α,β -unsaturated	1670–1680 (s)	
aryl ketones	1680–1690 (s)	

Important Infrared Absorptions (continued...)

Carboxylic Acids

C=O stretch	-					
ordinary	1710 (s)					
benzoic acids	1680–1690 (s)					
O–H stretch	3400–3000 (s)	very broad				
Esters and Lactones						
C=O stretch	1735 (s)	increases with decreasing ring size				
Acid Chlorides						
C=O stretch	1800 (s)	second weaker band sometimes observed at 1700-1750				
Acid Anhydrides						
C=O stretch	1760, 1820 (s)	two bands; increases with decreasing ring size in cyclic anhydrides				
	Amides and Lactams					
C=O stretch	1650–1655 (s)	increases with decreasing ring size				
N–H bend	1640 (s)					
N–H stretch	3200–3400 (m)	doublet absorption observed for some primary amides				
Nitriles						
C≡N stretch	2200–2250 (m)					
Amines						
N–H stretch	3200–3375 (m)	several absorptions sometimes observed, especially for primary amines				

Characteristic ¹H NMR Chemical Shifts

Type of Hydrogen	a	Type of Hydrogen	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(R = alkyl, Ar = aryl)	Chemical Shift (ð)	(R = alkyl, Ar = aryl)	Chemical Shift (ð)*
(CH ₃) ₄ Si	0 (by definition)	RCCH ₂ R	2.2–2.6
RCH ₃	0.8–1.0	O RCOCH ₃	3.7–3.9
RCH ₂ R	1.2–1.4	O RCOCH ₂ R	4.1–4.7
R ₃ CH	1.4–1.7	RCH ₂ I	3.1-3.3
$R_2C=CRCHR_2$	1.6-2.6	RCH ₂ Br	3.4-3.6
RC≡CH	2.0-3.0	RCH ₂ Cl	3.6-3.8
ArCH ₃	2.2-2.5	RCH_2F	4.4-4.5
ArCH ₂ R	2.3-2.8	ArOH	4.5-4.7
ROH	0.5-6.0	$R_2C=CH_2$	4.6-5.0
RCH ₂ OH	3.4-4.0	$R_2C=CHR$	5.0-5.7
RCH ₂ OR	3.3-4.0	ArH	6.5-8.5
R ₂ NH	0.5–5.0	O RCH	9.5–10.1
O RCCH ₃	2.1–2.3	O RCOH	10–13

*Values are relative to TMS. Other nearby functional groups may cause the signal to appear outside of these general ranges.

Characteristic ¹H NMR Coupling Constants

Characteristic ¹³C NMR Chemical Shifts

	Type of Carbon	
Chemical Shift (δ) [*]	(R = alkyl, Ar = aryl)	Chemical Shift (δ)*
0 (by definition)	RC≡CR	65-85
10-40	$R_2C=CR_2$	100–150
15–55	C-R	110–160
20–60	O RCOR	160–180
0–40	O RCNR ₂	165–180
25-65	O RCOH	165–185
35-80	O RCH	180–215
40-80	O RCR	180–215
	<i>Chemical Shift</i> (ð) [*] 0 (by definition) 10–40 15–55 20–60 0–40 25–65 35–80 40–80	Type of CarbonChemical Shift (δ)*($R = alkyl, Ar = aryl$)0 (by definition)RC=CR10-40R ₂ C=CR ₂ 15-55C-R20-60IIRCORO0-40IIRCORO0-40IIRCORO25-65IIRCOHO35-80II40-80IIRCRO

R₃COR 40-80

*Values are relative to TMS. Other nearby functional groups may cause the signal to appear outside of these general ranges.