ortho substitution:

For ALL o, p substitutions, the charge is at C1, C3 & C5

para substitution:

If the FG stabilizes a + by e^- donating groups, then the o, p substitution is FAVORED

If the FG destabilizes a + by e^- withdrawing groups, then the o, p substitution is DISFAVORED
meta substitution:

For ALL m substitutions -
the charge is at C2, C4 & C6

With m substitution, the FG is never adjacent to the carbocation, so the FG can neither stabilize or destabilize these intermediates; i.e. all these cations (resonance structures) are equally stable.

How are meta products favored???
The product distribution (ratio of o, p & m isomers) is controlled by this family of resonance structures:

For ALL o, p substitutions-the charge is at C1, C3 & C5

If the FG stabilizes a \oplus by e$^-$ donating groups, then the o, p substitution is FAVORED

If the FG destabilizes a \oplus by e$^-$ withdrawing groups, then the o, p substitution is DISFAVORED

In the family of resonance structures from the o, p isomers:

FG which are e$^-$ donating groups, will stabilize THIS resonance structure and favor o, p isomers. Groups which have lone pairs of e$^-$ such as N and O.

FG, which are e$^-$ withdrawing groups, will DE-STABILIZE this resonance structure and DISFAVOR the o, p isomers and by default, FAVOR the m isomer. Electropositive groups containing a carbonyl!